Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
Mult Scler Relat Disord ; 85: 105551, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38564996

RESUMO

BACKGROUND: Sphingolipids are signaling molecules and structural components of the axolemma and myelin sheath. Plasma sphingolipid levels may reflect disease status of neuromyelitis optica spectrum disorder (NMOSD). We aimed to examine plasma sphingolipids as disease severity biomarkers for NMOSD and compare their characteristics with those of serum neurofilament light chain (sNfL) and glial fibrillary acidic protein (sGFAP). METHODS: We measured plasma sphingolipids, sNfL, and sGFAP levels in NMOSD cases with anti-aquaporin-4-antibody. An unbiased approach, partial least square discriminant analysis (PLS-DA), was utilized to determine whether sphingolipid profiles differ according to the disease state of NMOSD (presence, moderate-to-severe disability [Expanded Disease Severity Scale, (EDSS) > 3.0], and relapses). RESULTS: We investigated 81 patients and 10 controls. PLS-DA models utilizing sphingolipids successfully differentiated patients with EDSS > 3.0, but failed to identify the presence of disease and relapses. Ceramide-C14-a significant contributor to differentiating EDSS > 3.0-positively correlated with EDSS, while its levels were independent of age and the presence of relapses. This characteristic was unique from those of sNfL and sGFAP, which were affected by age and relapses as well as EDSS. CONCLUSION: Plasma sphingolipids may be useful NMOSD biomarkers for disability with distinct characteristics compared to sNfL and sGFAP.

2.
Genome Biol ; 25(1): 40, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297316

RESUMO

BACKGROUND: Pervasive usage of alternative promoters leads to the deregulation of gene expression in carcinogenesis and may drive the emergence of new genes in spermatogenesis. However, little is known regarding the mechanisms underpinning the activation of alternative promoters. RESULTS: Here we describe how alternative cancer-testis-specific transcription is activated. We show that intergenic and intronic CTCF binding sites, which are transcriptionally inert in normal somatic cells, could be epigenetically reprogrammed into active de novo promoters in germ and cancer cells. BORIS/CTCFL, the testis-specific paralog of the ubiquitously expressed CTCF, triggers the epigenetic reprogramming of CTCF sites into units of active transcription. BORIS binding initiates the recruitment of the chromatin remodeling factor, SRCAP, followed by the replacement of H2A histone with H2A.Z, resulting in a more relaxed chromatin state in the nucleosomes flanking the CTCF binding sites. The relaxation of chromatin around CTCF binding sites facilitates the recruitment of multiple additional transcription factors, thereby activating transcription from a given binding site. We demonstrate that the epigenetically reprogrammed CTCF binding sites can drive the expression of cancer-testis genes, long noncoding RNAs, retro-pseudogenes, and dormant transposable elements. CONCLUSIONS: Thus, BORIS functions as a transcription factor that epigenetically reprograms clustered CTCF binding sites into transcriptional start sites, promoting transcription from alternative promoters in both germ cells and cancer cells.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Masculino , Humanos , Proteínas de Ligação a DNA/metabolismo , Fator de Ligação a CCCTC/metabolismo , Fatores de Transcrição/metabolismo , Histonas/metabolismo , Cromatina , Sítios de Ligação
3.
Front Mol Neurosci ; 16: 1185796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37324587

RESUMO

Introduction: CTCF-related disorder (CRD) is a neurodevelopmental disorder (NDD) caused by monoallelic pathogenic variants in CTCF. The first CTCF variants in CRD cases were documented in 2013. To date, 76 CTCF variants have been further described in the literature. In recent years, due to the increased application of next-generation sequencing (NGS), growing numbers of CTCF variants are being identified, and multiple genotype-phenotype databases cataloging such variants are emerging. Methods: In this study, we aimed to expand the genotypic spectrum of CRD, by cataloging NDD phenotypes associated with reported CTCF variants. Here, we systematically reviewed all known CTCF variants reported in case studies and large-scale exome sequencing cohorts. We also conducted a meta-analysis using public variant data from genotype-phenotype databases to identify additional CTCF variants, which we then curated and annotated. Results: From this combined approach, we report an additional 86 CTCF variants associated with NDD phenotypes that have not yet been described in the literature. Furthermore, we describe and explain inconsistencies in the quality of reported variants, which impairs the reuse of data for research of NDDs and other pathologies. Discussion: From this integrated analysis, we provide a comprehensive and annotated catalog of all currently known CTCF mutations associated with NDD phenotypes, to aid diagnostic applications, as well as translational and basic research.

4.
Front Immunol ; 14: 1113175, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37063859

RESUMO

Since the emergence of SARS-CoV-2, dozens of variants of interest and half a dozen variants of concern (VOCs) have been documented by the World Health Organization. The emergence of these VOCs due to the continuous evolution of the virus is a major concern for COVID-19 therapeutic antibodies and vaccines because they are designed to target prototype/previous strains and lose effectiveness against new VOCs. Therefore, there is a need for time- and cost-effective strategies to estimate the immune escape and redirect therapeutic antibodies against newly emerging variants. Here, we computationally predicted the neutralization escape of the SARS-CoV-2 Delta and Omicron variants against the mutational space of RBD-mAbs interfaces. Leveraging knowledge of the existing RBD-mAb interfaces and mutational space, we fine-tuned and redirected CT-p59 (Regdanvimab) and Etesevimab against the escaped variants through complementarity-determining regions (CDRs) diversification. We identified antibodies against the Omicron lineage BA.1 and BA.2 and Delta variants with comparable or better binding affinities to that of prototype Spike. This suggests that CDRs diversification by hotspot grafting, given an existing insight into the Ag-Abs interface, is an exquisite strategy to redirect antibodies against preselected epitopes and combat the neutralization escape of emerging SARS-CoV-2 variants.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Anticorpos Monoclonais/uso terapêutico , Regiões Determinantes de Complementaridade/genética
5.
JBI Evid Synth ; 20(10): 2543-2551, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081389

RESUMO

OBJECTIVE: The objective of this review is to characterize the state of literature regarding forcibly displaced persons' sexual and reproductive health in urban areas in low- and middle-income countries. Specific objectives include describing the sexual and reproductive health outcomes among forcibly displaced persons relocating in urban environments. INTRODUCTION: As a result of persecution, conflict, violence, human rights violations, and disruptive events, 89.3 million people worldwide were forcibly displaced as of the end of 2021. Forcibly displaced people face a wide range of sexual and reproductive health challenges in their countries of origin, en route to final destinations, and on arrival in host communities. There is a growing urbanization of forcibly displaced persons, yet there is limited attention on sexual and reproductive health outcomes of this population. INCLUSION CRITERIA: This review will consider studies that include sexual and/or reproductive health outcomes and needs of forcibly displaced persons within urban environments in low- and middle-income countries. Published and unpublished evidence, including quantitative, qualitative, mixed methods research, and gray literature, will be eligible for inclusion. METHODS: MEDLINE, Embase, PsycINFO, CINAHL, IBSS, ASSIA, SSCI, and Global Medicus Index will be searched for English-language articles. Titles and abstracts will be screened against the inclusion criteria, followed by full-text review of potentially eligible studies, which will be independently assessed by 2 reviewers. Eligible articles will be extracted and charted. Results from extracted data will be tabulated and accompanied by a narrative summary to summarize and contextualize the extracted data to describe how the results relate to the review's objectives and question.


Assuntos
Refugiados , Atenção à Saúde , Países em Desenvolvimento , Humanos , Renda , Saúde Reprodutiva , Literatura de Revisão como Assunto
6.
Proteomics ; 22(1-2): e2100171, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34561969

RESUMO

Human leukocyte antigen (HLA) class I has more than 18,000 alleles, each of which binds to a set of unique peptides from the cellular degradome. Deciphering the interaction between antigenic peptides and HLA proteins is crucial for understanding immune responses in autoimmune diseases and cancer. In this study, we aimed to characterize the peptidome that binds to HLA-A*33:03, which is one of the most prevalent HLA-A alleles in the Northeast Asian population, but poorly studied. For this purpose, we analyzed the HLA-A*33:03 monoallelic B cell line using immunoprecipitation of HLA-A and peptide complexes, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). In this study, we identified 5731 unique peptides that were associated with HLA A*33:03, and experimentally validated the affinity of 40 peptides for HLA-A*33:03 and their stability in HLA A*33:03-peptides complexes. To our knowledge, this study represents the largest dataset of peptides associated with HLA-A*33:03. Also, this is the first study in which HLA A*33:03-associated peptides were experimentally validated.


Assuntos
Antígenos HLA-A , Espectrometria de Massas em Tandem , Cromatografia Líquida , Epitopos , Humanos , Imunoprecipitação
7.
J Transl Med ; 19(1): 138, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33794926

RESUMO

BACKGROUND: Hepatocytes usually express fibroblast growth factor receptor 4 (FGFR4), but not its ligand, fibroblast growth factor 19 (FGF19). A subtype of hepatocellular carcinoma (HCC) expresses FGF19, which activates the FGFR4 signaling pathway that induces cell proliferation. FGFR4 inhibitors that target this mechanism are under clinical development for the treatment of HCCs with FGF19 amplification or FGFR4 overexpression. Src plays an essential role in the FGFR1 and FGFR2 signaling pathways. However, it is yet to be understood whether Src has any role in the FGF19-FGFR4 pathway in HCCs. In this study, we aimed to elucidate the role of Src in the FGF19-FGFR4 axis in HCC. METHODS: 3 HCC cell lines expressing both FGF19 and FGFR4 were selected. The expression of each protein was suppressed by siRNA treatment, and the activity-regulating relationship between FGFR4 and Src was investigated by westernblot. Co-immunoprecipitation was performed using the FGFR4 antibody to identify the endosomal complex formation and receptor endocytosis. The intracellular migration pathways of the endosomal complex were observed by immuno-fluorescence and nuclear co-immunoprecipitation. Dasatinib and BLU9931 were used for cytotoxicity comparison. RESULTS: FGFR4 modulates the activity of Src and Src modulates the expression of FGFR4, showing a mutual regulatory relationship. FGFR4 activated by FGF19 formed an endosomal complex with Src and STAT3 and moved to the nucleus. However, when Src was suppressed, the formation of the endosomal complex was not observed. FGFR4 was released from the complex transferred into the nucleus and the binding of Src and STAT3 was maintained. Dasatinib showed cytotoxic results comparable to BLU9931. The results of our study demonstrated that Src is essential for the nuclear transport of STAT3, as it induces the endosomal delivery of FGFR4 in FGF19-expressing HCC cell lines. CONCLUSIONS: We found that Src is essential for the endosomal delivery of the FGFR4 signaling complex in HCC. Our findings provide a scientific rationale for repurposing Src inhibitors for the treatment of HCCs in which the FGFR4 pathway is activated.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Fatores de Crescimento de Fibroblastos , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais
8.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-900906

RESUMO

Cerebral amyloid angiopathy-related inflammation (CAA-RI) is a distinct subset of cerebral amyloid angiopathy characterized by the auto-inflammatory response to amyloid-laden small arteries of cerebral cortex and leptomeninges. Clinical features include cognitive-behavioral change, headache, focal neurologic deficits and seizure. Because anti-inflammatory treatments can rapidly relieve neurologic symptoms, early diagnosis is critical. Herein, we report a CAA-RI case with distinct laboratory findings of a decreased cerebrospinal fluid amyloid beta 1-42 level and relatively reduced florbetaben uptake in the focal inflammatory lesion during the acute phase of CAA-RI.

9.
Artigo em Coreano | WPRIM (Pacífico Ocidental) | ID: wpr-893202

RESUMO

Cerebral amyloid angiopathy-related inflammation (CAA-RI) is a distinct subset of cerebral amyloid angiopathy characterized by the auto-inflammatory response to amyloid-laden small arteries of cerebral cortex and leptomeninges. Clinical features include cognitive-behavioral change, headache, focal neurologic deficits and seizure. Because anti-inflammatory treatments can rapidly relieve neurologic symptoms, early diagnosis is critical. Herein, we report a CAA-RI case with distinct laboratory findings of a decreased cerebrospinal fluid amyloid beta 1-42 level and relatively reduced florbetaben uptake in the focal inflammatory lesion during the acute phase of CAA-RI.

10.
PLoS Genet ; 16(4): e1008738, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282804

RESUMO

Nutrient utilization and energy metabolism are critical for the maintenance of cellular homeostasis. A mutation in the C9orf72 gene has been linked to the most common forms of neurodegenerative diseases that include amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Here we have identified an evolutionarily conserved function of C9orf72 in the regulation of the transcription factor EB (TFEB), a master regulator of autophagic and lysosomal genes that is negatively modulated by mTORC1. Loss of the C. elegans orthologue of C9orf72, ALFA-1, causes the nuclear translocation of HLH-30/TFEB, leading to activation of lipolysis and premature lethality during starvation-induced developmental arrest in C. elegans. A similar conserved pathway exists in human cells, in which C9orf72 regulates mTOR and TFEB signaling. C9orf72 interacts with and dynamically regulates the level of Rag GTPases, which are responsible for the recruitment of mTOR and TFEB on the lysosome upon amino acid signals. These results have revealed previously unknown functions of C9orf72 in nutrient sensing and metabolic pathways and suggest that dysregulation of C9orf72 functions could compromise cellular fitness under conditions of nutrient stress.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteína C9orf72/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Lipólise , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteína C9orf72/genética , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo
11.
Nat Neurosci ; 22(7): 1196, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31164751

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

12.
Nat Neurosci ; 22(6): 875-886, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061493

RESUMO

Misfolded protein toxicity and failure of protein quality control underlie neurodegenerative diseases including amyotrophic lateral sclerosis and frontotemporal dementia. Here, we identified Lethal(3)malignant brain tumor-like protein 1 (L3MBTL1) as a key regulator of protein quality control, the loss of which protected against the proteotoxicity of mutant Cu/Zn superoxide dismutase or C9orf72 dipeptide repeat proteins. L3MBTL1 acts by regulating p53-dependent quality control systems that degrade misfolded proteins. SET domain-containing protein 8, an L3MBTL1-associated p53-binding protein, also regulated clearance of misfolded proteins and was increased by proteotoxicity-associated stresses in mammalian cells. Both L3MBTL1 and SET domain-containing protein 8 were upregulated in the central nervous systems of mouse models of amyotrophic lateral sclerosis and human patients with amyotrophic lateral sclerosis/frontotemporal dementia. The role of L3MBTL1 in protein quality control is conserved from Caenorhabditis elegans to mammalian neurons. These results reveal a protein quality-control pathway that operates in both normal stress response and proteotoxicity-associated neurodegenerative diseases.


Assuntos
Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Proteínas Cromossômicas não Histona/metabolismo , Demência Frontotemporal/metabolismo , Demência Frontotemporal/patologia , Degeneração Neural/metabolismo , Degeneração Neural/patologia , Animais , Caenorhabditis elegans , Drosophila , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Proteínas Repressoras , Proteínas Supressoras de Tumor
13.
Bio Protoc ; 9(1)2019 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-30792567

RESUMO

Heterochrony refers to changes in the timing of developmental events, and it is precisely regulated in the organisms by the heterochronic genes such as C. elegans lin-4 and let-7. Mutations in these genes cause precocious or retarded development of certain cell lineages. With well-defined cell lineages, C. elegans is one of the best model systems to study heterochronic genes, since the subtle changes in the development of cell lineages can be easily identified. Among the different cell types in C. elegans, hypodermal seam cells and their lineages are well known to be maintained by lin-14, whose expression level is regulated by two miRNA genes, lin-4 and let-7, at the larval stages. Therefore, analyzing the heterochronic phenotype of hypodermal seam cells in C. elegans could yield detailed insights into the status of the miRNA pathway. Here we describe the assay protocol to analyze the heterochronic phenotypes of C. elegans hypodermal seam cells, which can be used as a reliable method to study the miRNA pathway.

14.
Genes Dev ; 32(21-22): 1380-1397, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366907

RESUMO

Cells undergo metabolic adaptation during environmental changes by using evolutionarily conserved stress response programs. This metabolic homeostasis is exquisitely regulated, and its imbalance could underlie human pathological conditions. We report here that C9orf72, which is linked to the most common forms of the neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), is a key regulator of lipid metabolism under stress. Loss of C9orf72 leads to an overactivation of starvation-induced lipid metabolism that is mediated by dysregulated autophagic digestion of lipids and increased de novo fatty acid synthesis. C9orf72 acts by promoting the lysosomal degradation of coactivator-associated arginine methyltransferase 1 (CARM1), which in turn regulates autophagy-lysosomal functions and lipid metabolism. In ALS/FTD patient-derived neurons or tissues, a reduction in C9orf72 function is associated with dysregulation in the levels of CARM1, fatty acids, and NADPH oxidase NOX2. These results reveal a C9orf72-CARM1 axis in the control of stress-induced lipid metabolism and implicates epigenetic dysregulation in relevant human diseases.


Assuntos
Proteína C9orf72/fisiologia , Glucose/fisiologia , Metabolismo dos Lipídeos , Proteína-Arginina N-Metiltransferases/metabolismo , Estresse Fisiológico , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Animais , Proteína C9orf72/genética , Proteína C9orf72/metabolismo , Células Cultivadas , Ácidos Graxos/metabolismo , Demência Frontotemporal/genética , Demência Frontotemporal/metabolismo , Células HEK293 , Humanos , Lisossomos/metabolismo , Camundongos , Proteína-Arginina N-Metiltransferases/fisiologia
15.
Mol Cell ; 69(5): 787-801.e8, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29499134

RESUMO

MicroRNA-mediated gene silencing is a fundamental mechanism in the regulation of gene expression. It remains unclear how the efficiency of RNA silencing could be influenced by RNA-binding proteins associated with the microRNA-induced silencing complex (miRISC). Here we report that fused in sarcoma (FUS), an RNA-binding protein linked to neurodegenerative diseases including amyotrophic lateral sclerosis (ALS), interacts with the core miRISC component AGO2 and is required for optimal microRNA-mediated gene silencing. FUS promotes gene silencing by binding to microRNA and mRNA targets, as illustrated by its action on miR-200c and its target ZEB1. A truncated mutant form of FUS that leads its carriers to an aggressive form of ALS, R495X, impairs microRNA-mediated gene silencing. The C. elegans homolog fust-1 also shares a conserved role in regulating the microRNA pathway. Collectively, our results suggest a role for FUS in regulating the activity of microRNA-mediated silencing.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Inativação Gênica , MicroRNAs/metabolismo , RNA de Helmintos/metabolismo , Proteína FUS de Ligação a RNA/metabolismo , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/metabolismo , Esclerose Amiotrófica Lateral/patologia , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Células HEK293 , Humanos , Camundongos , MicroRNAs/genética , RNA de Helmintos/genética , Proteína FUS de Ligação a RNA/genética
16.
J Tissue Eng Regen Med ; 12(2): e1022-e1033, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28107610

RESUMO

Our knowledge of the immunomodulatory role of mesenchymal stem cells (MSCs) in both the innate and adaptive immune systems has dramatically expanded, providing great promise for treating various autoimmune diseases. However, the contribution of MSCs to Th17-dominant immune disease, such as psoriasis and its underlying mechanism remains elusive. In this study, we demonstrated that human palatine tonsil-derived MSCs (T-MSCs) constitutively express both the membrane-bound and soluble forms of programmed death-ligand 1 (PD-L1), which enables T-MSCs to be distinguished from MSCs originating from other organs (i.e. bone marrow or adipose tissue). We also found that T-MSC-derived PD-L1 effectively represses Th17 differentiation via both cell-to-cell contact and a paracrine effect. Further, T-MSCs increase programmed death-1 (PD-1) expression on T-cells by secreting IFN-ß, which may enhance engagement with PD-L1. Finally, transplantation of T-MSCs into imiquimod-induced psoriatic skin inflammation in mice significantly abrogated disease symptoms, mainly by blunting the Th17 response in a PD-L1-dependent manner. This study suggests that T-MSCs might be a promising cell source to treat autoimmune diseases such as psoriasis, via its unique immunoregulatory features. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Autoimunidade , Antígeno B7-H1/metabolismo , Células-Tronco Mesenquimais/citologia , Tonsila Palatina/citologia , Transdução de Sinais , Células Th17/citologia , Animais , Autoimunidade/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Meios de Cultivo Condicionados/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Imiquimode/farmacologia , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/metabolismo , Linfonodos/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos Endogâmicos C57BL , Psoríase/genética , Psoríase/imunologia , Psoríase/patologia , Células da Side Population/efeitos dos fármacos , Células da Side Population/metabolismo , Pele/patologia , Células Th17/efeitos dos fármacos
17.
Artigo em Inglês | MEDLINE | ID: mdl-28702375

RESUMO

Anthrax toxins and capsules, which are encoded by genes located on pXO1 and pXO2, respectively, are major virulence factors of Bacillus anthracis. Our previous studies demonstrated that exposure to high-temperatures is unable to abolish the pXO1 plasmid of the Pasteur II strain, but the growth of the strain was obviously slower than that of the Sterne strain and wild-type virulent strain. To elucidate a potential regulatory mechanism of slowing growth, we employed comparative genome and bioinformatic analysis and revealed a unique SNP (G to T) at the 143135 bp position in pXO1 that is possibly involved in the mediation of growth of Pasteur II. However, the T to G mutation in groR did not result in any change of the amino acid sequence. A predominant nucleotide G existed at the 143135 bp in pXO1 of 100 wild-type B. anthracis isolates and 9 isolates documented in GenBank, whereas T replaced G in pXO1 of the Pasteur II strain. Further analysis indicate that the SNP is located in a gene between 143042 and 143173 bp, and that it encodes a small protein of 43 amino acids and is termed as a growth regulator (GroR). Site-directed mutagenesis and gene deletion demonstrates that groR regulates the growth and spore formation of B. anthracis. Our results indicate that the pXO1 plasmid is involved in the regulation of growth and spore formation in B. anthracis.


Assuntos
Bacillus anthracis/genética , Polimorfismo de Nucleotídeo Único , Esporos Bacterianos/crescimento & desenvolvimento , Antígenos de Bactérias/genética , Antígenos de Bactérias/metabolismo , Antígenos de Bactérias/toxicidade , Bacillus anthracis/crescimento & desenvolvimento , Bacillus anthracis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Toxinas Bacterianas/toxicidade , Plasmídeos/genética , Plasmídeos/metabolismo , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo
18.
Artigo em Inglês | MEDLINE | ID: mdl-28603695

RESUMO

The poly-γ-D-glutamic acid capsule and anthrax toxins are major virulence factors of Bacillus anthracis. Genes responsible for capsule biosynthesis are located on pXO2, whereas genes encoding the toxins, which are composed of edema factors, lethal factors, and protective antigens (PA), are located on pXO1. In this study, we found that the pag null mutation not only eliminated the production of the protective antigen, it also eliminated the ability of the B. anthracis Pasteur II strain to form capsules. qPCR analysis revealed that the deletion of pag decreased the transcription levels of the capABCD operon and its regulatory genes acpA and acpB. The introduction of the acpA or acpB plasmid complemented the effect of the pag null mutation on capsule formation. Taken together, the above results suggest that PA probably affects capsule biosynthesis by altering the expression of acpA and acpB. In addition, we found that the deletion mutation of pag remarkably attenuated bacterial pathogenicity in a mouse model of infection. Our results indicate that besides encoding the protective antigen, the pag gene of pXO1 is also involved in the modulation of capsule biosynthesis. Our findings provide new insight into the regulation mechanisms of capsule formation in B. anthracis Pasteur II strain.


Assuntos
Antígenos de Bactérias/genética , Bacillus anthracis/genética , Cápsulas Bacterianas/genética , Toxinas Bacterianas/genética , Plasmídeos/genética , Animais , Antígenos de Bactérias/imunologia , Bacillus anthracis/patogenicidade , Cápsulas Bacterianas/metabolismo , Proteínas de Bactérias/genética , Toxinas Bacterianas/imunologia , DNA Bacteriano/genética , Modelos Animais de Doenças , Regulação Bacteriana da Expressão Gênica , Técnicas de Silenciamento de Genes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Óperon/genética , Deleção de Sequência , Transativadores/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
19.
J Gynecol Oncol ; 28(4): e54, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28541641

RESUMO

There has been significant progress in the understanding of the pathology and molecular biology of rare ovarian cancers, which has helped both diagnosis and treatment. This paper provides an update on recent advances in the knowledge and treatment of rare ovarian cancers and identifies gaps that need to be addressed by further clinical research. The topics covered include: low-grade serous, mucinous, and clear cell carcinomas of the ovary. Given the molecular heterogeneity and the histopathological rarity of these ovarian cancers, the importance of designing adequately powered trials or finding statistically innovative ways to approach the treatment of these rare tumors has been emphasized. This paper is based on the Rare Ovarian Tumors Conference for Young Investigators which was presented in Tokyo 2015 prior to the 5th Ovarian Cancer Consensus Conference of the Gynecologic Cancer InterGroup (GCIG).


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Epiteliais e Glandulares/terapia , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/terapia , Doenças Raras/patologia , Doenças Raras/terapia , Adenocarcinoma de Células Claras/genética , Adenocarcinoma de Células Claras/patologia , Adenocarcinoma de Células Claras/terapia , Adenocarcinoma Mucinoso/diagnóstico , Adenocarcinoma Mucinoso/patologia , Adenocarcinoma Mucinoso/terapia , Carcinoma Epitelial do Ovário , Congressos como Assunto , Procedimentos Cirúrgicos de Citorredução , Feminino , Preservação da Fertilidade , Humanos , Terapia de Alvo Molecular , Gradação de Tumores , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/genética , Ovariectomia
20.
Autophagy ; 13(7): 1254-1255, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-28319438

RESUMO

A genetic mutation in the C9orf72 gene causes the most common forms of neurodegenerative diseases amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The C9orf72 protein, predicted to be a DENN-family protein, is reduced in ALS and FTD, but its functions remain poorly understood. Using a 3110043O21Rik/C9orf72 knockout mouse model, as well as cellular analysis, we have found that loss of C9orf72 causes alterations in the signaling states of central autophagy regulators. In particular, C9orf72 depletion leads to reduced activity of MTOR, a negative regulator of macroautophagy/autophagy, and concomitantly increased TFEB levels and nuclear translocation. Consistent with these alterations, cells exhibit enlarged lysosomal compartments and enhanced autophagic flux. Loss of the C9orf72 interaction partner SMCR8 results in similar phenotypes. Our findings suggest that C9orf72 functions as a potent negative regulator of autophagy, with a central role in coupling the cellular metabolic state with autophagy regulation. We thus propose C9orf72 as a fundamental component of autophagy signaling with implications in basic cell physiology and pathophysiology, including neurodegeneration.


Assuntos
Autofagia , Proteína C9orf72/genética , Esclerose Amiotrófica Lateral/genética , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Proteínas de Transporte/genética , Demência Frontotemporal/genética , Camundongos Knockout , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...